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1. ABSTRACT 

Especially in spaceflight and robotic exploration 

applications, virtual environments are essential tools in 

the planning and design stages of technical components 

and entire missions. To be able to produce realistic data 

from simulated optical sensors, these virtual testbeds do 

not only require accurate digital twins of the sensors 

themselves. The virtual testbed also needs to contain 

accurate representations of the objects in the sensor’s 

environment, including their shape and surface material 

properties. In this paper, we describe our process of 

creating digital twins of real-world materials from 3D 

LiDAR reference measurements. We use NVIDIA 

Material Description Language implement the materials 

for our virtual robotics and sensors testbed VEROSIM. 

MDL allows us to accurately model the reflective and 

transmissive characteristics of material surfaces. Then, 

we explore parameter optimization with a reinforcement 

learning agent architecture using the TensorFlow Agents 

library. 

2. INTRODUCTION 

In our current research project ViTOS-3, we use our 

virtual robotics and sensor testbed VEROSIM to support 

the development and validation of spaceflight-capable 

LiDAR sensors. In this publication, we analyze creation 

of digital twins for a set of materials used in spaceflight 

applications like orbital rendezvous and robotic 

exploration missions.  

Measuring, analyzing, and modelling material surface 

properties with respect to LiDAR sensors is an active 

topic of research with a wide range of applications like 

sensor simulation and algorithmic environment 

perception used for autonomous robots and driver 

assistance functions. Reference [1] analyzes the 

influence of materials on the accuracy of LiDAR 

measurements. References [2] and [3] demonstrate 

successful segmentation of LiDAR point cloud data into 

different material classes. In [4], the authors measure 

angle-dependent reflectance values of different materials 

relevant for automotive applications with a time-of-flight 

camera using modulated light at a wavelength of 945nm. 

They compare their measurements to the NASA 

ECOSTRESS spectral library [5] [6] and discuss how 

their measurements can be used for LiDAR models of 

other wavelengths for some material classes (concrete, 

asphalt, rubber, rock), but not for organic material (wood 

and other vegetation), where the reflectance drastically 

changes depending on the wavelength. 

As can be seen in [4], multiple measurements of the same 

material class can result in vastly differing reflectance 

curves with reflectance values varying up to factors of 4 

for some materials. The authors use gaussian 

distributions to describe the characteristics of the 

material class. In our case, we used a 3D LiDAR sensor 

to measure the reflectance values over small patches of 

material samples. We used a selection of 11 material 

samples including paints, metals, and specialized 

spaceflight materials (see Figure 1). This reference 

experiment is discussed in subsection 5.1. In subsection 

5.2, we then create a model for simulated materials 

exhibiting the measured characteristics when scanned by 

a digital twin of the LiDAR. Scanning two-dimensional 

patches instead of a single, centered measurement point 

on the material captures the characteristics in reflectance 

variance better and consequently enables us to build a 

better model for the surface material. Subsection 5.3 

discusses selection of the best parameters to use for the 

material, including an attempt at training a reinforcement 

learning agent for the task.  

We use NVIDIA Material Description Language (MDL, 

[7]) to implement the model of the material. The Material 

Description Language specification provides a range of 

bidirectional scattering distribution functions (BSDF) for 

the definition of material surface properties for use in 

rendering and sensor simulation applications. The three 

main BSDFs are used to specify diffuse, specular, and 

glossy light interaction. Each of these have parameters to 

control reflection tint (color), reflection factor, and 

roughness. Additionally, the language defines modifiers 

and combiners to implement more complex light 

interactions like layered materials or Fresnel reflection. 



 

 

Figure 1: materials scanned in the reference experiment 

3. SIMULATION ENVIRONMENT 

The simulation environment used to compare the 

simulated materials with the reference experiment is our 

virtual testbed VEROSIM [12]. The software has 

modules for kinematics, rigid-body-dynamics, and the 

simulation of optical sensors (raytracing and 

rasterization-based). The testbed also includes a 

collection of processing, analysis, and data I/O tools, as 

well as a python interpreter. VEROSIM is centered 

around the concept of digital twins [13], giving users the 

option to have comprehensive digital representations of 

systems and objects, including their interfaces, 

properties, and functionality. 

In the MDL creation phase, we use the virtual testbed to 

simulate and measure the parametrized base material that 

is used in each concrete material. For the evaluation of 

the simulated materials, we recreated the reference 

experiment in the virtual testbed, and used a digital twin 

of the LiDAR to scan the MDL materials (see Figure 2). 

We used raytracing LiDAR simulation [14] to generate 

the simulated point clouds and intensity measurements 

and exported the data for analysis and comparison with 

Python scripts. 

 

Figure 2: Digital twins of LiDAR, robots, and material 

sample in the virtual testbed 

4. METHODOLOGY 

4.1 Reference measurements 

To create the reference measurements, a spaceflight-

capable LiDAR scanned eleven differed material samples 

under 90 different viewing angles from 0° to 89° from 

normal angle (i.e., normal to shallow) at a distance of one 

meter. Details of the experiment setup are discussed in 

[8]. The LiDAR produced a 3D point cloud that included 

reflection intensity for each datapoint. The intensity was 

recorded in raw sensor readings (“digits”, 𝑑), which 

(according to manufacturer specifications) correspond to 

received power 𝑃 following equation (1): 

 𝑃(𝑑) = 1.0042𝑒−6 ∗  1.00422𝑑  (1) 

For each material, we defined a quadratic region of 

interest (ROI) that was free of mounting utilities (see 

Figure 3). The edge lengths of the region ranged from 

3cm to 8cm. With a spatial resolution of the LiDAR of 

4mm, this resulted in hit counts in the normal view of 7 

x 7 for the smallest regions to 20 x 20 for the largest 

regions.  

 

Figure 3: Unfiltered measurements with mounting 

utilities visible in the point clouds. 



We chose an intermediate data representation we call 

intensity grid to define the simulated materials and 

compare simulated with measured datasets. The intensity 

grid is calculated from the 3D point cloud and 

corresponding intensity values for each of the 90 angle-

steps. The region of interest is subdivided in evenly 

spaced intervals. At each grid position 𝑝𝐺𝑅𝐼𝐷 , we collect 

the nearby measurement points and calculate a weighted 

average of their intensities I(𝑝𝐺𝑅𝐼𝐷), with weight 

depending on their distance to the grid point as shown in 

equations (2) and (3): 

 I(𝑝𝐺𝑅𝐼𝐷) =
∑ 𝑤𝑖𝐼𝑖

𝑛
𝑖=0

∑ 𝑤𝑖
𝑛
𝑖=0

  (2) 

𝑤𝑖 =  {

1

|𝑝𝑖,𝑝GRID|4 , if 𝑝𝐺𝑅𝐼𝐷[0]  −  𝑝𝑖[0] < 𝑡 and 

                𝑝𝐺𝑅𝐼𝐷[1]  − 𝑝𝑖[1] < 𝑡
0, else

  (3) 

 

with 𝑝 the positions in local sample coordinates, and 𝑡 the 

distance threshold, selected as distance between grid 

positions. We transform the point cloud into the sample 

reference frame to make the calculation independent 

from range errors of the LiDAR sensor and inaccuracies 

from the manual measurements of sample holder and 

material thickness. 

Combining all 90 intensity grids of a material lets us 

define the absolute reflectance intensity curve for each 

position on the intensity grid. To do so, we calculate the 

incidence angle for each grid position as angle between 

the normal vector of the sample holder and the 

connection between the grid position and the LiDAR 

optical center as shown in Figure 4.  

 

Figure 4: Calculation of incidence angle for the grid 

positions 

Scanned at shallow angles, the reflectivity of most of the 

selected materials was so low that the LiDAR receiver 

failed to register returns for some or even most of the 

emitted pulses (see Figure 5). The angle at which the 

returns started to vanish is highly dependent on the 

material. For most materials, the incidence angle at which 

we could observe missing returns was around 80°, but for 

some materials, this started as early as 30° 

(“honeycomb”) or 50° (kapton netting, silica black, black 

paint). Missing returns lead to zero-values in the intensity 

grids, which required special handling during evaluation 

(see below). 

 

Figure 5: Kapton scanned at incidence angles 70° and 

80°. Left: Point cloud and grid locations, right: color-

coded intensity grid values. White pixels denote missing 

values due to insufficient return intensity. 

4.2 MDL material 

We define an MDL material for each scanned reference 

material. We use a basic (diffuse or glossy) BSDF, and 

the df::measured_factor modifier to multiply the 

intensity at different positions on the surface with angle-

dependent factors so that they match the absolute 

reflectance intensity values from the reference material. 

To control the reflectivity at different positions of the 

simulated object, we use the texture coordinates of its 

geometry. We define a regular grid with the same 

resolution as our intensity grid over the texture 

coordinates and create a mapping from texture 

coordinates to the corresponding grid position. We use 

df::normalized_mix with weights based on this mapping 

to select which reflectance curve is used at different 

locations on the geometry as shown in Listing 1. 



 

Listing 1: MDL code structure of our material. BSDF 

selection based on texture coordinates (yellow). Each 

component (purple) stores the reflectance curve factors 

(blue) for a single grid position. 

The df::measured_factor modifier multiplies an existing 

BSDF (specified as parameter base) with angle-

dependent factors. The factors are encoded in a grayscale 

image with a resolution of one pixel per degree. Since not 

all grid positions are scanned under every viewing angle, 

we interpolate missing values with the Navier-Stokes 

method (using the inpaint function of the OpenCV library 

[11]) and extrapolate missing values at the beginning and 

end using linearization. 

To calculate the multiplication factors relative to the 

reflection intensity of the base material, we built an 

environment in our testbed in which a simulated LiDAR 

scans a virtual sample using the base BSDF. The MDL 

generator module calculates two intensity grids: one from 

the output of the simulated LiDAR scanning the base 

material, and one from the replay data for the current 

reference material. By dividing the absolute intensity 

values from both grids at every grid position, the module 

calculates the relative value required for the 

df::measured_factor modifier function. 

Initially, we chose an ideal diffuse white BSDF as base 

for each material. Tests quickly revealed that using 

individually parametrized base materials yielded better 

results. This is caused by the type of encoding of the 

modification factors - the modification factors can only 

be encoded as an 8-bit grayscale image and cannot 

exceed a factor of 1.0. This leads to resolution issues and 

impossible-to-represent modification factors greater than 

1.0 for some materials and/or viewing angles. Selection 

of suitable base material parameters is discussed in the 

next section. 

4.3 Parameter optimization  

Instead of manually choosing the three free parameters of 

the base material (base_roughness (float), base_value 

(float) and base_is_glossy (bool)) for each material 

sample, we trained a reinforcement learning agent to 

optimize these parameters. By doing so, we wanted the 

agent to learn a model that could generalize to selecting 

good parameters for unknown/future measurements of 

different materials without having to search the whole 

parameter space for every material. In typical 

reinforcement learning setups, the agents take multiple 

actions sequentially in a dynamic environment to 

influence their state and the environment to optimize a 

reward function. In our case, the state consists of the 

intensity grids of both sweeps (the reference material and 

the simulated material with the current parameters), and 

the action is to set all three base parameters to a value 

between 0 and 1 (note that for the base_is_glossy 

parameter, we convert the floating-point of the action to 

a boolean by rounding to 0 or 1). After each action, the 

simulation is re-run to produce a new MDL material 

variant and to scan it with the simulated LIDAR. Each 

episode ends after a fixed number of actions (n=10, 

chosen arbitrarily as the system state in our case only 

depends on the most recent action taken and not on the 

history of previous actions). After each episode, we select 

the next reference material, randomly select initial base 

material parameters, and continue the training. 

The reward is calculated from comparison between the 

intensity grids of the reference data and the output from 

the simulated LiDAR. We took the absolute and relative 

intensity differences at each grid position to calculate 

mean absolute error, mean relative error and root-mean-

square error over the entire 90-degree sweep. The inverse 

of the average root-mean-square error is used as reward 

function, the other metrics are used for manual analysis 

and evaluation purposes as shown in Figure 6. Grid 

positions where the reference intensity grid has no data 

are ignored for all metrics. Once the relative amount of 

missing data points passes 40%, we ignore all further 

measurements as the LiDAR data is unreliable (this is the 

“step limit” from Figure 6). 

 

Figure 6: Comparison between reference measurements 

and simulated material 



For the agent, we chose the twin-delayed deep 

deterministic policy gradient algorithm (TD3 [10]), an 

evolution of the deep deterministic gradient policy agent 

(DDPG [9]). This choice was based on our previous good 

experiences with the algorithm and the fact that it 

supports continuous action spaces. Our implementation 

uses the TensorFlow Agents framework [15]. We did two 

separate training runs. Because the simulation of the 

MDL materials with high-resolution intensity grids 

(16x16) was taking so long, we started with a low-

resolution setting (2x2) to see if the approach and 

parameters were useful at all. With the low-resolution 

setting, each training step took about one minute, 

resulting in an episode time of about 10 minutes. The 

shape of the neural networks and the hyperparameters 

used can be seen in Table 1. 

Table 1: Hyperparameters for TD3 agent training 

Training set name TD3 #1 TD3 #2 

Actor network layers  

(fully connected) 

(250, 250, 250) (64, 64) 

Critic network layers 

[observation, action, joint] 

(fully connected) 

(250) (64, 64) 

Learning rates (actor, critic) 0.001, 0.0001 

Discount factor γ 0.9 

Epsilon (without decay) 0.3 

Target update τ 0.01 

Exploration noise 0.2 

Target policy noise 0.2 

Initial collect steps  200 

Replay buffer size 1000 

Batch size 512 

 

Unfortunately, neither of the training runs produced a 

model that performed as well as expected (see Figure 7). 

Despite seeing good parameters in the initial random 

guessing phase that fills the replay buffer, the agent 

quickly converges on parameters that are not optimal, and 

sometimes worse than the initial random parameters at 

the beginning of an episode. Further training did not 

improve the performance. In a third training run, the 

agent converged to even worse parameters with choosing 

a glossy base material, despite using a diffuse base would 

have given better rewards independently of the other two 

factors. 

 

Figure 7: Training of a TD3 agent. Each line is a 

training episode. After the initial random-guessing 

phase to fill the replay buffer (light blue), the actions 

taken by the agent are often worse than the initial 

random guess (step 0). An increase in performance with 

increasing episode number is not observable. 

We could not determine the cause for this unexpected 

behavior. Just adding more training episodes did not help 

– the agent just seemed to be stuck, not fully exploring 

the parameter space (see Figure 8). We used standard 

parameter values and recommendations from literature. 

 

Figure 8: Material parameters chosen by the agent 

during training episodes 100 to 110 and 800 to 810 for 

a single material (astroQuartz). The agent is no longer 

exploring the full parameter space and oscillates 

around suboptimal values. Note: The agent chose a 

diffuse base material, so that we could plot the 

remaining parameters in 2D. 

As a comparison and to get useful materials for our 

simulation, we fell back to an analytic grid-search 

strategy. We sampled the parameter search-space in small 

regular intervals and simulated every combination of 

parameter values. The optimal values produced by this 

search resulted in materials which accurately reproduce 

the intensity grids from the reference material, with less 

than 2% relative per-position error across all steps and 

grid positions – see Figure 6. 



 

Figure 9: Reward maps produced by grid-search for 

material astroQuartz using diffuse and glossy base.  

The reward plot using the diffuse base (Figure 9, left) 

shows a distinctive gradient towards maximum reward, 

except for the sharp falloff at base_value zero (in which 

case the simulated material no longer reflects anything, 

leading to a reward of zero). Comparing Figure 8 and 

Figure 9, we can see that the agent is clearly not 

following the gradient towards higher reward values. 

After double-checking that we had not made errors like 

feeding negative reward to the agent or having swapped 

the order/role of the action parameters, we still have no 

explanation for the failure of the training. We do not think 

that the sharp reward falloff from low to zero values of 

the base_value parameter sufficiently explains the 

observed behavior. 

To make sure our implementation is correct, we used the 

same framework and hyperparameters to train an agent 

on a scenario that resembled the properties of our 

application problem while having a reduced number of 

input and output parameters and complexity. In this 

scenario, a single floating-point value between zero and 

100.0 replaces each of the two sets of intensity grids 

(reference and simulation result), and the action space is 

also a single value with the same bounds. The reward 

function was chosen as the inverse of the difference 

between reference value and action value (same as in the 

original application). The reference value was chosen 

randomly for each episode. The agent could achieve a 

maximum reward by choosing the action value that was 

indicated in the top half of its environment/observation 

vector and repeat the action until the episode is over. The 

training of this scenario succeeded; we could observe 

how the agent quickly converged to choosing action 

values close to the reference value after a few hundred 

episodes of training. We therefore  feel confident that the 

failure mode observed in the actual use case is caused by 

some underlying properties of the problem and/or poor 

choice of hyperparameters. 

5. CONCLUSION AND FUTURE WORK 

We demonstrated the use of the Material Description 

Language to describe surface properties independent 

from a specific programming language or rendering 

algorithm. The grid-based design of our custom MDL 

materials allows us to control surface reflectivity at each 

position of the grid. With this technique, we created 

accurate digital twins for heterogeneous real-world 

materials. We also introduced our concept of intensity 

grids as a two-dimensional representation of a region-of-

interest from three-dimensional point-cloud data with 

intensity measurements. 

We did not succeed in training a reinforcement learning 

agent to optimize the parameters of the materials, and 

used a grid-search across all parameter combinations to 

find good parameter sets instead. More research is 

needed to determine why the RL training did not follow 

the clearly existing gradients towards higher rewards, and 

instead converged to selecting parameters at the opposite 

end of the gradients in the action-space. Discussions 

about DDPG failure modes can be found in [16] and [17], 

but the root cause of the failure mode discussed in [16] 

(sparse reward) does not apply to our training 

environment. The extrapolation error discussed in [17] 

might be a possible cause, but the publication does not 

mention our failure mode of the training getting stuck at 

the wrong end of the action-space. The authors of [17] 

propose using a different algorithm (Batch-Constrained 

deep Q-learning, BCQ). 

While our use case with a system state exclusively 

depending on the most recent action (independent of 

previous actions or its current state) is unusual for the 

application of a reinforcement learning strategy. But 

there is nothing in the literature to indicate that this 

property is required for successful training. To verify this, 

we implemented a scenario in which the agent training 

succeeded. It remains to be seen if any of the following 

changes leads to a successful agent model: 

• Choosing different hyperparameters: DDPG 

(the predecessor of the TD3-algorithm we used) 

is sometimes reported to be sensitive to 

hyperparameters.  

• Change of different network size/layout: 

Choosing larger network layer sizes and more 

layers provides greater representational 

capabilities for the network. However, this also 

introduces some downsides, as larger networks 

can overfit the training data, and/or can suffer 

from gradient instability. 

• Not including the simulated intensity grids into 

the observation state vector. This halves the size 



of the observation vector and makes the agent 

completely unable to influence the state (since it 

only contains the reference data). Theoretically, 

the optimal material parameters exclusively 

depend on the reference values, so this could 

speed up the learning process. 

• Selecting a different RL agent algorithm: Off-

policy algorithms like the TD3 algorithm we 

used decouple data collection and policy 

improvement. While off-policy-algorithms are 

typically more sample-efficient (i.e., requiring 

fewer training episodes to converge) compared 

to on-policy algorithms, they are more 

challenging to stabilize. A comparison with a 

slower, but more robust on-policy algorithm like 

proximal policy optimization (PPO) might be 

required in our use case. By discretizing the 

action space like we did for the grid-search 

approach, it is possible to deploy an even wider 

range of algorithms to the problem.  

As an alternative to training deep learning agents, the 

field of classical derivative-free optimization (also 

known as blackbox optimization) offers a different set of 

algorithms to quickly find approximately optimal 

parameters. These algorithms are suitable to problems 

where the function is noisy and/or time-consuming to 

evaluate, and its derivative is unavailable or impractical 

to obtain. Genetic algorithms, simulated annealing, 

Powell’s method, or Nelder-Mead optimization promise 

efficient localization of good solution, but optimality 

guarantees can not be given. 
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