
CREATING SIMULATED MATERIALS FROM LIDAR DATA

USING AI FOR PARAMETER OPTIMIZATION

Dipl.-Inf. Gregor Jochmann(1), Prof. Dr.-Ing. Jürgen Roßmann(2)

(1) RIF e.V, Joseph-von-Fraunhofer-Str. 20, 44227 Dortmund, Germany, gregor.jochmann@rt.rif-ev.de

(2) MMI, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, rossmann@mmi.rwth-aachen.de

1. ABSTRACT

Especially in spaceflight and robotic exploration

applications, virtual environments are essential tools in

the planning and design stages of technical components

and entire missions. To be able to produce realistic data

from simulated optical sensors, these virtual testbeds do

not only require accurate digital twins of the sensors

themselves. The virtual testbed also needs to contain

accurate representations of the objects in the sensor’s

environment, including their shape and surface material

properties. In this paper, we describe our process of

creating digital twins of real-world materials from 3D

LiDAR reference measurements. We use NVIDIA

Material Description Language implement the materials

for our virtual robotics and sensors testbed VEROSIM.

MDL allows us to accurately model the reflective and

transmissive characteristics of material surfaces. Then,

we explore parameter optimization with a reinforcement

learning agent architecture using the TensorFlow Agents

library.

2. INTRODUCTION

In our current research project ViTOS-3, we use our

virtual robotics and sensor testbed VEROSIM to support

the development and validation of spaceflight-capable

LiDAR sensors. In this publication, we analyze creation

of digital twins for a set of materials used in spaceflight

applications like orbital rendezvous and robotic

exploration missions.

Measuring, analyzing, and modelling material surface

properties with respect to LiDAR sensors is an active

topic of research with a wide range of applications like

sensor simulation and algorithmic environment

perception used for autonomous robots and driver

assistance functions. Reference [1] analyzes the

influence of materials on the accuracy of LiDAR

measurements. References [2] and [3] demonstrate

successful segmentation of LiDAR point cloud data into

different material classes. In [4], the authors measure

angle-dependent reflectance values of different materials

relevant for automotive applications with a time-of-flight

camera using modulated light at a wavelength of 945nm.

They compare their measurements to the NASA

ECOSTRESS spectral library [5] [6] and discuss how

their measurements can be used for LiDAR models of

other wavelengths for some material classes (concrete,

asphalt, rubber, rock), but not for organic material (wood

and other vegetation), where the reflectance drastically

changes depending on the wavelength.

As can be seen in [4], multiple measurements of the same

material class can result in vastly differing reflectance

curves with reflectance values varying up to factors of 4

for some materials. The authors use gaussian

distributions to describe the characteristics of the

material class. In our case, we used a 3D LiDAR sensor

to measure the reflectance values over small patches of

material samples. We used a selection of 11 material

samples including paints, metals, and specialized

spaceflight materials (see Figure 1). This reference

experiment is discussed in subsection 5.1. In subsection

5.2, we then create a model for simulated materials

exhibiting the measured characteristics when scanned by

a digital twin of the LiDAR. Scanning two-dimensional

patches instead of a single, centered measurement point

on the material captures the characteristics in reflectance

variance better and consequently enables us to build a

better model for the surface material. Subsection 5.3

discusses selection of the best parameters to use for the

material, including an attempt at training a reinforcement

learning agent for the task.

We use NVIDIA Material Description Language (MDL,

[7]) to implement the model of the material. The Material

Description Language specification provides a range of

bidirectional scattering distribution functions (BSDF) for

the definition of material surface properties for use in

rendering and sensor simulation applications. The three

main BSDFs are used to specify diffuse, specular, and

glossy light interaction. Each of these have parameters to

control reflection tint (color), reflection factor, and

roughness. Additionally, the language defines modifiers

and combiners to implement more complex light

interactions like layered materials or Fresnel reflection.

Figure 1: materials scanned in the reference experiment

3. SIMULATION ENVIRONMENT

The simulation environment used to compare the

simulated materials with the reference experiment is our

virtual testbed VEROSIM [12]. The software has

modules for kinematics, rigid-body-dynamics, and the

simulation of optical sensors (raytracing and

rasterization-based). The testbed also includes a

collection of processing, analysis, and data I/O tools, as

well as a python interpreter. VEROSIM is centered

around the concept of digital twins [13], giving users the

option to have comprehensive digital representations of

systems and objects, including their interfaces,

properties, and functionality.

In the MDL creation phase, we use the virtual testbed to

simulate and measure the parametrized base material that

is used in each concrete material. For the evaluation of

the simulated materials, we recreated the reference

experiment in the virtual testbed, and used a digital twin

of the LiDAR to scan the MDL materials (see Figure 2).

We used raytracing LiDAR simulation [14] to generate

the simulated point clouds and intensity measurements

and exported the data for analysis and comparison with

Python scripts.

Figure 2: Digital twins of LiDAR, robots, and material

sample in the virtual testbed

4. METHODOLOGY

4.1 Reference measurements

To create the reference measurements, a spaceflight-

capable LiDAR scanned eleven differed material samples

under 90 different viewing angles from 0° to 89° from

normal angle (i.e., normal to shallow) at a distance of one

meter. Details of the experiment setup are discussed in

[8]. The LiDAR produced a 3D point cloud that included

reflection intensity for each datapoint. The intensity was

recorded in raw sensor readings (“digits”, 𝑑), which

(according to manufacturer specifications) correspond to

received power 𝑃 following equation (1):

 𝑃(𝑑) = 1.0042𝑒−6 ∗ 1.00422𝑑 (1)

For each material, we defined a quadratic region of

interest (ROI) that was free of mounting utilities (see

Figure 3). The edge lengths of the region ranged from

3cm to 8cm. With a spatial resolution of the LiDAR of

4mm, this resulted in hit counts in the normal view of 7

x 7 for the smallest regions to 20 x 20 for the largest

regions.

Figure 3: Unfiltered measurements with mounting

utilities visible in the point clouds.

We chose an intermediate data representation we call

intensity grid to define the simulated materials and

compare simulated with measured datasets. The intensity

grid is calculated from the 3D point cloud and

corresponding intensity values for each of the 90 angle-

steps. The region of interest is subdivided in evenly

spaced intervals. At each grid position 𝑝𝐺𝑅𝐼𝐷 , we collect

the nearby measurement points and calculate a weighted

average of their intensities I(𝑝𝐺𝑅𝐼𝐷), with weight

depending on their distance to the grid point as shown in

equations (2) and (3):

 I(𝑝𝐺𝑅𝐼𝐷) =
∑ 𝑤𝑖𝐼𝑖

𝑛
𝑖=0

∑ 𝑤𝑖
𝑛
𝑖=0

 (2)

𝑤𝑖 = {

1

|𝑝𝑖,𝑝GRID|4 , if 𝑝𝐺𝑅𝐼𝐷[0] − 𝑝𝑖[0] < 𝑡 and

 𝑝𝐺𝑅𝐼𝐷[1] − 𝑝𝑖[1] < 𝑡
0, else

 (3)

with 𝑝 the positions in local sample coordinates, and 𝑡 the

distance threshold, selected as distance between grid

positions. We transform the point cloud into the sample

reference frame to make the calculation independent

from range errors of the LiDAR sensor and inaccuracies

from the manual measurements of sample holder and

material thickness.

Combining all 90 intensity grids of a material lets us

define the absolute reflectance intensity curve for each

position on the intensity grid. To do so, we calculate the

incidence angle for each grid position as angle between

the normal vector of the sample holder and the

connection between the grid position and the LiDAR

optical center as shown in Figure 4.

Figure 4: Calculation of incidence angle for the grid

positions

Scanned at shallow angles, the reflectivity of most of the

selected materials was so low that the LiDAR receiver

failed to register returns for some or even most of the

emitted pulses (see Figure 5). The angle at which the

returns started to vanish is highly dependent on the

material. For most materials, the incidence angle at which

we could observe missing returns was around 80°, but for

some materials, this started as early as 30°

(“honeycomb”) or 50° (kapton netting, silica black, black

paint). Missing returns lead to zero-values in the intensity

grids, which required special handling during evaluation

(see below).

Figure 5: Kapton scanned at incidence angles 70° and

80°. Left: Point cloud and grid locations, right: color-

coded intensity grid values. White pixels denote missing

values due to insufficient return intensity.

4.2 MDL material

We define an MDL material for each scanned reference

material. We use a basic (diffuse or glossy) BSDF, and

the df::measured_factor modifier to multiply the

intensity at different positions on the surface with angle-

dependent factors so that they match the absolute

reflectance intensity values from the reference material.

To control the reflectivity at different positions of the

simulated object, we use the texture coordinates of its

geometry. We define a regular grid with the same

resolution as our intensity grid over the texture

coordinates and create a mapping from texture

coordinates to the corresponding grid position. We use

df::normalized_mix with weights based on this mapping

to select which reflectance curve is used at different

locations on the geometry as shown in Listing 1.

Listing 1: MDL code structure of our material. BSDF

selection based on texture coordinates (yellow). Each

component (purple) stores the reflectance curve factors

(blue) for a single grid position.

The df::measured_factor modifier multiplies an existing

BSDF (specified as parameter base) with angle-

dependent factors. The factors are encoded in a grayscale

image with a resolution of one pixel per degree. Since not

all grid positions are scanned under every viewing angle,

we interpolate missing values with the Navier-Stokes

method (using the inpaint function of the OpenCV library

[11]) and extrapolate missing values at the beginning and

end using linearization.

To calculate the multiplication factors relative to the

reflection intensity of the base material, we built an

environment in our testbed in which a simulated LiDAR

scans a virtual sample using the base BSDF. The MDL

generator module calculates two intensity grids: one from

the output of the simulated LiDAR scanning the base

material, and one from the replay data for the current

reference material. By dividing the absolute intensity

values from both grids at every grid position, the module

calculates the relative value required for the

df::measured_factor modifier function.

Initially, we chose an ideal diffuse white BSDF as base

for each material. Tests quickly revealed that using

individually parametrized base materials yielded better

results. This is caused by the type of encoding of the

modification factors - the modification factors can only

be encoded as an 8-bit grayscale image and cannot

exceed a factor of 1.0. This leads to resolution issues and

impossible-to-represent modification factors greater than

1.0 for some materials and/or viewing angles. Selection

of suitable base material parameters is discussed in the

next section.

4.3 Parameter optimization

Instead of manually choosing the three free parameters of

the base material (base_roughness (float), base_value

(float) and base_is_glossy (bool)) for each material

sample, we trained a reinforcement learning agent to

optimize these parameters. By doing so, we wanted the

agent to learn a model that could generalize to selecting

good parameters for unknown/future measurements of

different materials without having to search the whole

parameter space for every material. In typical

reinforcement learning setups, the agents take multiple

actions sequentially in a dynamic environment to

influence their state and the environment to optimize a

reward function. In our case, the state consists of the

intensity grids of both sweeps (the reference material and

the simulated material with the current parameters), and

the action is to set all three base parameters to a value

between 0 and 1 (note that for the base_is_glossy

parameter, we convert the floating-point of the action to

a boolean by rounding to 0 or 1). After each action, the

simulation is re-run to produce a new MDL material

variant and to scan it with the simulated LIDAR. Each

episode ends after a fixed number of actions (n=10,

chosen arbitrarily as the system state in our case only

depends on the most recent action taken and not on the

history of previous actions). After each episode, we select

the next reference material, randomly select initial base

material parameters, and continue the training.

The reward is calculated from comparison between the

intensity grids of the reference data and the output from

the simulated LiDAR. We took the absolute and relative

intensity differences at each grid position to calculate

mean absolute error, mean relative error and root-mean-

square error over the entire 90-degree sweep. The inverse

of the average root-mean-square error is used as reward

function, the other metrics are used for manual analysis

and evaluation purposes as shown in Figure 6. Grid

positions where the reference intensity grid has no data

are ignored for all metrics. Once the relative amount of

missing data points passes 40%, we ignore all further

measurements as the LiDAR data is unreliable (this is the

“step limit” from Figure 6).

Figure 6: Comparison between reference measurements

and simulated material

For the agent, we chose the twin-delayed deep

deterministic policy gradient algorithm (TD3 [10]), an

evolution of the deep deterministic gradient policy agent

(DDPG [9]). This choice was based on our previous good

experiences with the algorithm and the fact that it

supports continuous action spaces. Our implementation

uses the TensorFlow Agents framework [15]. We did two

separate training runs. Because the simulation of the

MDL materials with high-resolution intensity grids

(16x16) was taking so long, we started with a low-

resolution setting (2x2) to see if the approach and

parameters were useful at all. With the low-resolution

setting, each training step took about one minute,

resulting in an episode time of about 10 minutes. The

shape of the neural networks and the hyperparameters

used can be seen in Table 1.

Table 1: Hyperparameters for TD3 agent training

Training set name TD3 #1 TD3 #2

Actor network layers

(fully connected)

(250, 250, 250) (64, 64)

Critic network layers

[observation, action, joint]

(fully connected)

(250) (64, 64)

Learning rates (actor, critic) 0.001, 0.0001

Discount factor γ 0.9

Epsilon (without decay) 0.3

Target update τ 0.01

Exploration noise 0.2

Target policy noise 0.2

Initial collect steps 200

Replay buffer size 1000

Batch size 512

Unfortunately, neither of the training runs produced a

model that performed as well as expected (see Figure 7).

Despite seeing good parameters in the initial random

guessing phase that fills the replay buffer, the agent

quickly converges on parameters that are not optimal, and

sometimes worse than the initial random parameters at

the beginning of an episode. Further training did not

improve the performance. In a third training run, the

agent converged to even worse parameters with choosing

a glossy base material, despite using a diffuse base would

have given better rewards independently of the other two

factors.

Figure 7: Training of a TD3 agent. Each line is a

training episode. After the initial random-guessing

phase to fill the replay buffer (light blue), the actions

taken by the agent are often worse than the initial

random guess (step 0). An increase in performance with

increasing episode number is not observable.

We could not determine the cause for this unexpected

behavior. Just adding more training episodes did not help

– the agent just seemed to be stuck, not fully exploring

the parameter space (see Figure 8). We used standard

parameter values and recommendations from literature.

Figure 8: Material parameters chosen by the agent

during training episodes 100 to 110 and 800 to 810 for

a single material (astroQuartz). The agent is no longer

exploring the full parameter space and oscillates

around suboptimal values. Note: The agent chose a

diffuse base material, so that we could plot the

remaining parameters in 2D.

As a comparison and to get useful materials for our

simulation, we fell back to an analytic grid-search

strategy. We sampled the parameter search-space in small

regular intervals and simulated every combination of

parameter values. The optimal values produced by this

search resulted in materials which accurately reproduce

the intensity grids from the reference material, with less

than 2% relative per-position error across all steps and

grid positions – see Figure 6.

Figure 9: Reward maps produced by grid-search for

material astroQuartz using diffuse and glossy base.

The reward plot using the diffuse base (Figure 9, left)

shows a distinctive gradient towards maximum reward,

except for the sharp falloff at base_value zero (in which

case the simulated material no longer reflects anything,

leading to a reward of zero). Comparing Figure 8 and

Figure 9, we can see that the agent is clearly not

following the gradient towards higher reward values.

After double-checking that we had not made errors like

feeding negative reward to the agent or having swapped

the order/role of the action parameters, we still have no

explanation for the failure of the training. We do not think

that the sharp reward falloff from low to zero values of

the base_value parameter sufficiently explains the

observed behavior.

To make sure our implementation is correct, we used the

same framework and hyperparameters to train an agent

on a scenario that resembled the properties of our

application problem while having a reduced number of

input and output parameters and complexity. In this

scenario, a single floating-point value between zero and

100.0 replaces each of the two sets of intensity grids

(reference and simulation result), and the action space is

also a single value with the same bounds. The reward

function was chosen as the inverse of the difference

between reference value and action value (same as in the

original application). The reference value was chosen

randomly for each episode. The agent could achieve a

maximum reward by choosing the action value that was

indicated in the top half of its environment/observation

vector and repeat the action until the episode is over. The

training of this scenario succeeded; we could observe

how the agent quickly converged to choosing action

values close to the reference value after a few hundred

episodes of training. We therefore feel confident that the

failure mode observed in the actual use case is caused by

some underlying properties of the problem and/or poor

choice of hyperparameters.

5. CONCLUSION AND FUTURE WORK

We demonstrated the use of the Material Description

Language to describe surface properties independent

from a specific programming language or rendering

algorithm. The grid-based design of our custom MDL

materials allows us to control surface reflectivity at each

position of the grid. With this technique, we created

accurate digital twins for heterogeneous real-world

materials. We also introduced our concept of intensity

grids as a two-dimensional representation of a region-of-

interest from three-dimensional point-cloud data with

intensity measurements.

We did not succeed in training a reinforcement learning

agent to optimize the parameters of the materials, and

used a grid-search across all parameter combinations to

find good parameter sets instead. More research is

needed to determine why the RL training did not follow

the clearly existing gradients towards higher rewards, and

instead converged to selecting parameters at the opposite

end of the gradients in the action-space. Discussions

about DDPG failure modes can be found in [16] and [17],

but the root cause of the failure mode discussed in [16]

(sparse reward) does not apply to our training

environment. The extrapolation error discussed in [17]

might be a possible cause, but the publication does not

mention our failure mode of the training getting stuck at

the wrong end of the action-space. The authors of [17]

propose using a different algorithm (Batch-Constrained

deep Q-learning, BCQ).

While our use case with a system state exclusively

depending on the most recent action (independent of

previous actions or its current state) is unusual for the

application of a reinforcement learning strategy. But

there is nothing in the literature to indicate that this

property is required for successful training. To verify this,

we implemented a scenario in which the agent training

succeeded. It remains to be seen if any of the following

changes leads to a successful agent model:

• Choosing different hyperparameters: DDPG

(the predecessor of the TD3-algorithm we used)

is sometimes reported to be sensitive to

hyperparameters.

• Change of different network size/layout:

Choosing larger network layer sizes and more

layers provides greater representational

capabilities for the network. However, this also

introduces some downsides, as larger networks

can overfit the training data, and/or can suffer

from gradient instability.

• Not including the simulated intensity grids into

the observation state vector. This halves the size

of the observation vector and makes the agent

completely unable to influence the state (since it

only contains the reference data). Theoretically,

the optimal material parameters exclusively

depend on the reference values, so this could

speed up the learning process.

• Selecting a different RL agent algorithm: Off-

policy algorithms like the TD3 algorithm we

used decouple data collection and policy

improvement. While off-policy-algorithms are

typically more sample-efficient (i.e., requiring

fewer training episodes to converge) compared

to on-policy algorithms, they are more

challenging to stabilize. A comparison with a

slower, but more robust on-policy algorithm like

proximal policy optimization (PPO) might be

required in our use case. By discretizing the

action space like we did for the grid-search

approach, it is possible to deploy an even wider

range of algorithms to the problem.

As an alternative to training deep learning agents, the

field of classical derivative-free optimization (also

known as blackbox optimization) offers a different set of

algorithms to quickly find approximately optimal

parameters. These algorithms are suitable to problems

where the function is noisy and/or time-consuming to

evaluate, and its derivative is unavailable or impractical

to obtain. Genetic algorithms, simulated annealing,

Powell’s method, or Nelder-Mead optimization promise

efficient localization of good solution, but optimality

guarantees can not be given.

6. ACKNOWLEDGMENT

This work is part of the project “ViTOS-3”, supported by

the German Aerospace Center (DLR) with funds of the

German Federal Ministry of Economics and Technology

(BMWi) under support code 50 RA 2121.

7. REFERENCES

[1] Voegtle, T., Schwab, I., Landes, T. (2008). Influences

of different materials on the measurement of a

Terrestrial Laser Scanner (TLS). Proc. of the XXI

Congress, the International Society for

Photogrammetry and Remote Sensing, ISPRS2008.

p. 37.

[2] Song, J.-h., Han, S.-h., Yu, K., Kim, Y.-i. (2012).

Assessing the possibility of land-cover classification

using lidar intensity data, International Archives of

Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol. 34.

[3] Yuan, L., Guo, J. and Wang, Q. (2020). “Automatic

classification of common building materials from 3d

terrestrial laser scan data. Automation in

Construction, vol. 110, p. 103017, 2020

[4] Muckenhuber S, Holzer H, Bockaj Z. (2020).

Automotive Lidar Modelling Approach Based on

Material Properties and Lidar Capabilities. Sensors.

Basel 2020;20(11):3309. doi:10.3390/s20113309

[5] Jet Propulsion Laboratory, California Institute of

Technology. (2020). ECOSTRESS Spectral Library

Version 1.0. Available online:

https://speclib.jpl.nasa.gov (accessed on 13

September 2023).

[6] Meerdink, S. K., Hook, S. J., Roberts, D. A., Abbott,

E. A. (2019). The ECOSTRESS spectral library

version 1.0. Remote Sens. Environ. 2019, 230, 1–8.

[7] NVIDIA (2019) - MDL Language Specification,

Available online:

https://developer.nvidia.com/designworks/dl/mdl-

1_6-spec (accessed on 13 September 2023)

[8] Dahmen, U., Priggemeyer, M., & Roßmann, J.

(2021). Cyber-Physical Systems and Digital Twins

in Practice – A Real-Life Application Example. 8th

IEEE Asia-Pacific Conference on Computer Science

and Data Engineering (CSDE 2021). Brisbane,

Australia.

[9] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,

Erez, T., Tassa, Y., Silver, D. & Wierstra, D. (2016).

Continuous control with deep reinforcement

learning. ICLR.

[10] Fujimoto, S., van Hoof, H. & Meger, D. (2018).

Addressing function approximation error in actor-

critic methods. arXiv:1802.09477.

[11] Bradski, G. (2000). The OpenCV Library. Dr.

Dobb’s Journal of Software Tools.

[12] Emde, M., Priggemeyer, M., Steil, T., Grinshpun, G.,

Rossmann, J. (2016). A Virtual Space Robotics

Testbed for Optical Sensors in Aerospace,

Proceedings of the 47th International Symposium on

Robotics - Robotics in the era of digitalisation (ISR

2016) VDE Verlag.

[13] Trauer, J., Schweigert-Recksiek, S., Engel, C.,

Spreitzer, K., Zimmermann, M. (2020). What is a

digital twin? – Definitions and insights from an

industrial case study in technical product

development. Proceedings of the Design Society:

DESIGN Conference, 1, 757-766.

[14] Thieling, J. and Roßmann, J. (2021). Physical Sensor

Simulation for the Verification and Validation of

Optical Systems, ASIM 2021.

[15] The TF-Agents authors (2023) TensorFlow Agents.

Available online:

https://www.tensorflow.org/agents (accessed on 13

September 2023)

[16] Matheron, G., Perrin, N, Sigaudt, O. (2020).

Understanding Failures of Deterministic Actor-

Critic with Continuous Action Spaces and Sparse

Rewards. Artificial Neural Networks and Machine

Learning (ICANN) 2020. Springer International

Publishing. p 308-320.

[17] Fujimoto, S., Meger, D., Precup, D. (2019) Off-

Policy Deep Reinforcement Learning without

Exploration. arXiv:1812.02900 (2018)

	1. ABSTRACT
	2. INTRODUCTION
	3. SIMULATION ENVIRONMENT
	4. METHODOLOGY
	4.1 Reference measurements
	4.2 MDL material
	4.3 Parameter optimization

	5. CONCLUSION AND FUTURE WORK
	6. ACKNOWLEDGMENT
	7. REFERENCES

